ChatVertexAI
Google Vertex is a service that
exposes all foundational models available in Google Cloud, like
gemini-1.5-pro
, gemini-1.5-flash
, etc. For a full and updated list
of available models visit VertexAI documentation.
This will help you getting started with ChatVertexAI
chat
models. For detailed documentation of all
ChatVertexAI
features and configurations head to the API
reference.
Overviewβ
Integration detailsβ
LangChain.js supports Google Vertex AI chat models as an integration. It supports two different methods of authentication based on whether youβre running in a Node environment or a web environment.
Class | Package | Local | Serializable | PY support | Package downloads | Package latest |
---|---|---|---|---|---|---|
ChatVertexAI | @langchain/google-vertexai | β | β | β |
Model featuresβ
See the links in the table headers below for guides on how to use specific features.
Tool calling | Structured output | JSON mode | Image input | Audio input | Video input | Token-level streaming | Token usage | Logprobs |
---|---|---|---|---|---|---|---|---|
β | β | β | β | β | β | β | β | β |
Setupβ
To access ChatVertexAI
models youβll need to setup Google VertexAI in
your Google Cloud Platform (GCP) account, save the credentials file, and
install the @langchain/google-vertexai
integration package.
Credentialsβ
Head to your GCP account and
generate a credentials file. Once youβve done this set the
GOOGLE_APPLICATION_CREDENTIALS
environment variable:
export GOOGLE_APPLICATION_CREDENTIALS="path/to/your/credentials.json"
If running in a web environment, you should set the
GOOGLE_VERTEX_AI_WEB_CREDENTIALS
environment variable as a JSON
stringified object, and install the @langchain/google-vertexai-web
package:
GOOGLE_VERTEX_AI_WEB_CREDENTIALS={"type":"service_account","project_id":"YOUR_PROJECT-12345",...}
If you want to get automated tracing of your model calls you can also set your LangSmith API key by uncommenting below:
# export LANGCHAIN_TRACING_V2="true"
# export LANGCHAIN_API_KEY="your-api-key"
Installationβ
The LangChain ChatVertexAI
integration lives in the
@langchain/google-vertexai
package:
- npm
- yarn
- pnpm
npm i @langchain/google-vertexai
yarn add @langchain/google-vertexai
pnpm add @langchain/google-vertexai
Or if using in a web environment like a Vercel Edge function:
- npm
- yarn
- pnpm
npm i @langchain/google-vertexai-web
yarn add @langchain/google-vertexai-web
pnpm add @langchain/google-vertexai-web
Instantiationβ
Now we can instantiate our model object and generate chat completions:
import { ChatVertexAI } from "@langchain/google-vertexai";
// Uncomment the following line if you're running in a web environment:
// import { ChatVertexAI } from "@langchain/google-vertexai-web"
const llm = new ChatVertexAI({
model: "gemini-1.5-pro",
temperature: 0,
maxRetries: 2,
authOptions: {
// ... auth options
},
// other params...
});
Invocationβ
const aiMsg = await llm.invoke([
[
"system",
"You are a helpful assistant that translates English to French. Translate the user sentence.",
],
["human", "I love programming."],
]);
aiMsg;
AIMessageChunk {
"content": "J'adore programmer. \n",
"additional_kwargs": {},
"response_metadata": {},
"tool_calls": [],
"tool_call_chunks": [],
"invalid_tool_calls": [],
"usage_metadata": {
"input_tokens": 20,
"output_tokens": 7,
"total_tokens": 27
}
}
console.log(aiMsg.content);
J'adore programmer.
Chainingβ
We can chain our model with a prompt template like so:
import { ChatPromptTemplate } from "@langchain/core/prompts";
const prompt = ChatPromptTemplate.fromMessages([
[
"system",
"You are a helpful assistant that translates {input_language} to {output_language}.",
],
["human", "{input}"],
]);
const chain = prompt.pipe(llm);
await chain.invoke({
input_language: "English",
output_language: "German",
input: "I love programming.",
});
AIMessageChunk {
"content": "Ich liebe das Programmieren. \n",
"additional_kwargs": {},
"response_metadata": {},
"tool_calls": [],
"tool_call_chunks": [],
"invalid_tool_calls": [],
"usage_metadata": {
"input_tokens": 15,
"output_tokens": 9,
"total_tokens": 24
}
}
API referenceβ
For detailed documentation of all ChatVertexAI features and configurations head to the API reference: https://api.js.langchain.com/classes/langchain_google_vertexai.ChatVertexAI.html
Relatedβ
- Chat model conceptual guide
- Chat model how-to guides