MistralAI
Want to run Mistral's models locally? Check out our Ollama integration.
You are currently on a page documenting the use of Cohere models as text completion models. Many popular models available on Mistral are chat completion models.
You may be looking for this page instead.
This will help you get started with MistralAI completion models (LLMs)
using LangChain. For detailed documentation on MistralAI
features and
configuration options, please refer to the API
reference.
Overview
Integration details
Class | Package | Local | Serializable | PY support | Package downloads | Package latest |
---|---|---|---|---|---|---|
MistralAI | @langchain/mistralai | ❌ | ✅ | ❌ |
Setup
To access MistralAI models you’ll need to create a MistralAI account,
get an API key, and install the @langchain/mistralai
integration
package.
Credentials
Head to console.mistral.ai to sign up to
MistralAI and generate an API key. Once you’ve done this set the
MISTRAL_API_KEY
environment variable:
export MISTRAL_API_KEY="your-api-key"
If you want to get automated tracing of your model calls you can also set your LangSmith API key by uncommenting below:
# export LANGCHAIN_TRACING_V2="true"
# export LANGCHAIN_API_KEY="your-api-key"
Installation
The LangChain MistralAI integration lives in the @langchain/mistralai
package:
- npm
- yarn
- pnpm
npm i @langchain/mistralai
yarn add @langchain/mistralai
pnpm add @langchain/mistralai
Instantiation
Now we can instantiate our model object and generate chat completions:
import { MistralAI } from "@langchain/mistralai";
const llm = new MistralAI({
model: "codestral-latest",
temperature: 0,
maxTokens: undefined,
maxRetries: 2,
// other params...
});
Invocation
const inputText = "MistralAI is an AI company that ";
const completion = await llm.invoke(inputText);
completion;
has developed Mistral 7B, a large language model (LLM) that is open-source and available for commercial use. Mistral 7B is a 7 billion parameter model that is trained on a diverse and high-quality dataset, and it has been fine-tuned to perform well on a variety of tasks, including text generation, question answering, and code interpretation.
MistralAI has made Mistral 7B available under a permissive license, allowing anyone to use the model for commercial purposes without having to pay any fees. This has made Mistral 7B a popular choice for businesses and organizations that want to leverage the power of large language models without incurring high costs.
Mistral 7B has been trained on a diverse and high-quality dataset, which has enabled it to perform well on a variety of tasks. It has been fine-tuned to generate coherent and contextually relevant text, and it has been shown to be capable of answering complex questions and interpreting code.
Mistral 7B is also a highly efficient model, capable of processing text at a fast pace. This makes it well-suited for applications that require real-time responses, such as chatbots and virtual assistants.
Overall, Mistral 7B is a powerful and versatile large language model that is open-source and available for commercial use. Its ability to perform well on a variety of tasks, its efficiency, and its permissive license make it a popular choice for businesses and organizations that want to leverage the power of large language models.
Chaining
We can chain our completion model with a prompt template like so:
import { PromptTemplate } from "@langchain/core/prompts";
const prompt = PromptTemplate.fromTemplate(
"How to say {input} in {output_language}:\n"
);
const chain = prompt.pipe(llm);
await chain.invoke({
output_language: "German",
input: "I love programming.",
});
I love programming.
Ich liebe Programmieren.
In German, the phrase "I love programming" is translated as "Ich liebe Programmieren." The word "programming" is translated to "Programmieren," and "I love" is translated to "Ich liebe."
Since the Mistral LLM is a completions model, they also allow you to
insert a suffix
to the prompt. Suffixes can be passed via the call
options when invoking a model like so:
const suffixResponse = await llm.invoke(
"You can print 'hello world' to the console in javascript like this:\n```javascript",
{
suffix: "```",
}
);
console.log(suffixResponse);
console.log('hello world');
```
As seen in the first example, the model generated the requested
console.log('hello world')
code snippet, but also included extra
unwanted text. By adding a suffix, we can constrain the model to only
complete the prompt up to the suffix (in this case, three backticks).
This allows us to easily parse the completion and extract only the
desired response without the suffix using a custom output parser.
import { MistralAI } from "@langchain/mistralai";
const llmForFillInCompletion = new MistralAI({
model: "codestral-latest",
temperature: 0,
});
const suffix = "```";
const customOutputParser = (input: string) => {
if (input.includes(suffix)) {
return input.split(suffix)[0];
}
throw new Error("Input does not contain suffix.");
};
const resWithParser = await llmForFillInCompletion.invoke(
"You can print 'hello world' to the console in javascript like this:\n```javascript",
{
suffix,
}
);
console.log(customOutputParser(resWithParser));
console.log('hello world');
API reference
For detailed documentation of all MistralAI features and configurations head to the API reference: https://api.js.langchain.com/classes/langchain_mistralai.MistralAI.html
Related
- LLM conceptual guide
- LLM how-to guides